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High dimensional behavior of the Kardar-Parisi-Zhang growth dynamics
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We investigate analytically the large dimensional behavior of the Kardar-Parisi-ZKa) dynamics of
surface growth using a recently proposed nonperturbative renormalization for self-affine surface dynamics.
Within this framework, we show that the roughness exponeatécays not faster thas~ 1/d for larged. This
implies the absence of a finite upper critical dimens{@1063-651X98)50611-3

PACS numbgs): 64.60.Ak, 05.40+j, 05.70.Ln, 68.35.Fx

The study of the nonequilibrium dynamics of rough sur-of an upper critical dimensiod,, above which the expo-
faces and interfaces has received a great deal of attention ivents recover their mean-fieldr infinite dimensional val-
the last yeard1,2]. Both theoretically and experimentally ues @=0) [7], is highly debated8]. The application of
many efforts have been devoted to single out the traits anfield theoretical tools presents an inherent problem: one in-
features shared by apparently different phenomena. In thideed finds that the fixed point controlling the rough phase of
context, by analogy with equilibrium statistical mechanics,the KPZ is not accessible to perturbation expansiox; ithis
the search for universality classes is a central task. Théact renders standard field theoretical tools inadequate for
Kardar-Parisi-Zhang equatiofiKPZ) [3] is, for surface this problem. Early applications of nonperturbative methods
growth, the main contribution in this direction. It is the mini- such as functional renormalization grol§) and Flory-type
mal Langevin equation capturing the essence of many differargumentq10] suggested thatl.=4, in agreement with a
ent growth models beyond the Gaussian linear thgb,4]. 1/d expansiori11] around thed=c limit. Later the mode-
It reads coupling approximation led to contradictory results suggest-
ing the existence of a finite, [12] or d.= [13]. Argu-
ments for a finited; based on directeflL4] or invasion[15]
percolation have also been proposed. More recently a de-
tailed analysis of @ =2+ e perturbative expansion revealed
where h(x,t) is the surface profilex is the position in a a singularity atd=4 [16], leading Lasig to the conclusion
d-dimensional substrate; is a Gaussian white noiseandx  thatd.=4 is the upper critical dimension of the KPZ dynam-
are constants. The KPZ equation also describes the behavitss [17].

dh(x,t)
at

A
=VV2h+§(Vh)2+ 7(X,t), (1)

of directed polymers in random medi#], systems with mul- Numerical simulations of models in the KPZ universality
tiplicative noise[5], and it is related to the Burgers equation class markedly disagree with this last conclusi8h show-
[6]. ing thate>0 at least up ta=7 [18]. In particular, numeri-
A central quantity of interest is the roughnas%L) of a  cal results suggest a largebehaviora~1/d in agreement
system of linear sizé&, defined as with early conjecturegSee Ref[2], p. 75. Both of these

conclusions were confirmed by a recently proposed renor-
1 o malization group(RG) approachi19]. The key idea of this
W2(L)= -5 Z [h(x,t)—h]?, (2 approach is that the geometric scaling of the growing surface
L™ x can be ascribed to a scale invariant dynamic process, which
o builds the same correlations at all length scales. Foale
where h=(1/L%)=,h(x,t). In many seemingly unrelated invariant dynamicss the fixed point of the RG transforma-
growth processes the large scale properties of the roughnetisn, which is derived by consistency requirements of the
are observed to be scale invariant and universal; for examplelescription of the same system at two different scales.
in the stationary staté/(L)~L“ and correlations decay on a Analogous ideas, implementeda a real space RG, have
typical timets~L?, with universal exponents andz. These proved to be quite powerful to investigate the critical prop-
critical exponents are not independent, as a consequence efties of nonequilibrium, strong coupling problefi28]. The
the Galilean invariance of the related Burgers equdtigfl  implicit nature of the RG transformation, which is similar in
a+z=2. It is thus sufficient to focus the attention on one spirit to the idea of phenomenological R&1], allows us to
exponent, sayr. avoid the use of hierarchical lattices, a source of incontrol-
The theoretical analysis of the KPZ is extremely difficult. lable approximations, specially in high dimensions. Remark-
Apart from thed=1 case, where a special symmetry makesably, the exponents predicted by the RG are in excellent
an exact solution possible with=1/2, the situation is still agreement with numerical simulations upde- 7.
quite controversial despite the large effort devoted to the In this Rapid Communication we analyze the ladybe-
problem. In particular, the fundamental issue of the existenclavior of this RG approach and show that it predicts that the
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roughness exponeit vanishes not faster thandLfor d>1. 1+4w3(4X,)
This rules out the existence of a finite upper critical dimen- 1+402(2 X4 1) = —2 5
sion. In what follows we expose the essential concepts of this 1+40%(2X)

nm;r:]r;gs iﬁntcri]eagly It to _the analytical study of the KPZ dy for the dynamic parametex,. The attractive fixed point
get limit. . PN - . X
Consider a growing surface, whose dynamics, at the miX = limy_..x (i it e?<|sts) |de*nt|f|es thescale invariant dy-
croscopic scale, is defined in terms of a stochastic equatioff2micsand Eq.(4) with x,=x* finally yields the roughness
such as Eq(1), or by a discrete model. If we partititl)(n the exponent
(d+1)-dimensional space in cells of lateral sizg=2"L,
and vertical sizeh,, we obtain astatic description of the = lim log, WZ(Lk+1): log[1+4w?(2x*)]
surface at the coarse-grained schle With some majority K0 W2(Ly) 2log 2
rule each block is declared to be empty or filled. For each
substrate celi the numberh(i) of filled blocks on top of it Equations5) and(6) are the starting point of our analysis. A
identifies the interface configuration, in unitg, at scale., . more detailed discussion of their derivation can be found in
Note thath, is an independent parameter of the static de-Ref. [19]. We note here that the existence of an attractive
scription. Scale invariance implies thathif is properly cho-  fixed pointx* implies that the process is “self-organized”:
sen, the coarse-grained system looks similar at(laige  No fine tuning is necessary in order to observe the critical
enough length scaled,. The optimal geometric descrip- behavior.
tion, which best exhibits scale invariance, in our case, is that A key observation is that, since?(/',x)—0 for x—x,
with hxW(L,)~Lg of the same order of typical height X* = is a fixed point of Eq.(5) corresponding tox=0.
fluctuations over a distance,. In the RG procedure, we Therefore the RG scheme allows, in principle, for the occur-
shall fix h,=2W(L,) in order to have a scale invariant de- rence of a finite upper critical dimensios, (a=0 for d
scription of the surfacesee Ref.[19] for detaily. The =d;) and the existence of a finite attractive fixed point for
coarse-graining procedure, which defines the static descri@” dis a nontrivial prediction. A finite stable fixed point was
tion in terms of blocks of sizé,, also induces a flow of the found in Ref.[19] for d=1, ... ,8using Monte Carlo meth-
microscopic dynamics towards affective dynamicat the 0ds to compute»?(/,x). The same method was also applied
same scalé, ; this is defined in terms of the transition rates to the Gaussian theof%=0 in Eq.(1)], recovering the result
for the addition of an occupied block. The main feature ofdc=2, i.e., a=0 for d=2 [22]. Though very powerful, the
KPZ dynamics is lateral growtf8,4], and this suggests the Monte Carlo method cannot be pushed to very high dimen-
following minimal parametrization of the growth rates at the sions, nor does it provide an explicit analytic behavioraof
generic scalé., is as a function of.
In the following we study analytically the largedimit of
the RG in order to extract its predictions on the existence of
rlh(i)—h(i)+1]=1+x, >, ma{0h(j)—h(i)]. (3) a finite upper critical dimension and on the lagyéehavior
fnnt of the roughness exponent.
) ) o ) The technical difficulty lies in the explicit calculation of
The first term |§_the contribution of the vgrtlcal grOV\(i.ke.,. the functionsw?(/,x) for /=2, 4. Ford>1 we expect
random depositionand the second term is the contrlbu_'_tlon a<1, which means that surface fluctuationg/’,x)~ /<
of lateral growth. Indeed the sum over neighbor block gltgs ~1+aIn/+ ... are of order 1. This suggests that for a
counts the area of the vertical surface exposed towards. site system of small size” we can reasonably account for the

X, is then the ratio of lateral to vertical growth rates. We fjctyations of the interface if we allot(i) to take only two
;hall come back later, in the conclusions, to the approximagajyes:h(i)=h, or h(i) =hy+ 1. This drastic approximation
tions implied by Eq(3). _ . has the advantages of making the explicit computation fea-
In order to derive thde RG transformatlon, let us partition agjpje on the one hand, and of providing a lower bound for the
system of sizd. into 7/ cells of sizel//". We observe that  gxponenta on the other. We shall come back later to this
the roughness“(L) can be written as the average rough-jmportant issue. Let us only stress, for the time being, that a

nessW?(L//) insidesingle cells plus the fluctuations of the |ower bound one is sufficient to exclude the existence of a
average heighamongdifferent cells. The second contribu- fipite de.

6

tion, within the description at scale//, is simply given by In the above approximation, growth can only occur on
the roughnes®?(/,x) of a system of cells, withx being  «jow" sites [h(i)=hy]. This means that Eq(3) is only
the dynamic parameter at scalg/, times the square height yajig if h(i)=h, and the rates vanish on “high” sites
of the cells[2W(L//)]*. Hence we find [h(i)=hy+1]. It is convenient to classify the possible con-
; figurations{h(i)} by the numbem of “high” sites. The
WA(L)=W(L//)[1+40?(/ X)], (4)  roughness Eq2) of each configuration of “high” sites is

the same and is equal to €In//%n//% and the dynamics
which is the basis of the RG approach. With=4, L involves only transitions from configurations withto con-
=Ly, and x=Xx,, it gives W?(L,,,)/W?(L,). The same figurations withn+1 “high” sites. We can then group all
guantity can be alternatively computed using E4). with configurationgh(i)} with n “high” sites in the same effec-
/=2, once withL=L,,, andx=x,,, and a second time tive state with a great simplification of the structure of the
with L=L,,; andx=x,. The consistency of the two calcu- master equatiofthe state wittm= /"1 is equivalent to the flat
lations yields an implicit RG transformation surfacen=0). The only non-vanishing transition rategn
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FIG. 1. Graphic analysis of E@5) from the present approxima-

tion and from Monte Carlo evaluation far=7.

—n+1) are obtained from Eq:3) summing on all possible
final configurations and taking the average on the initial con-

figurations, which leads to

r(h—n+1)=/9-n+xQ,. 7)

d

FIG. 2. Value ofa from the present calculatiogsolid line) and
from simulations of Refs[8] and[18] for d=1,...,7. Inview of
the approximations involve@see text we obtain a lower bound.
Inset: fixed point value™* (d) vsd. The theoretical predictio¢solid
line) is an upper bound to the true (d).

where we have assumei>1 and/%>1. Combining Eq.
(11) with the RG equatiori5) we obtain, to leading order in
d, a fixed point

The first term here accounts for vertical growth, which can
occur only on the”9—n “low” sites. The second term is the
contribution of lateral growth anf , is the average number
of lateral walls(i.e., the surface between “low” and “high”
siteg in configurations withn “high” sites. Assuming that
“low” and “high” sites are randomly distributed, each
“low” site has on average @&n//% “high” neighbor sites 1
and therefore a= 3(In2)2

x* =291 2, (12)

consistent with the assumptiahy> 1. Using now Eq(6) it
is straightforward to find, to leading order @» 1,

1
R (13

Furthermore, we can also analyze the stability of the fixed
point. The derivative of the RG transformatior,, ;
=R(xy) of Eq. (5), at the fixed point, is

The distribution of “high” sites is actually not random but
we have verified numerically that, for large enough dimen-
sions, EqQ.(8) provides a reasonable approximati@®3].
Combining Egs(7) and(8) one easily obtains the probability

Q :2d(/d—n)1. (8)
n /d

1
+0(d™?). (14)

Py*)— - =
RIO)==1% 512 g

pn Of staten in the stationary state of the master equation gjnce|R’(x*)|<1 we can conclude that the fixed point is

r(0—1)
POrin—nT1)’

/-1, 9)

pn= n=1,..

where pg is fixed by the normalization conditioB! o p,
=1. A simple calculation leads to
-1
] o

2dIn/+In

1+2dxk)
/‘d‘f' Zka

/d
poz{ 1+ ka

The roughness of configurations withparticles, using Eq.
(2), is (1—n//%n//? which, averaged over the distribution

pn [as specified by Eq9) and (10)] gives

od
20 /)~ ~
) (/,X)—pOdek (11

attractiveVd. Therefore we find a finite, stable fixed point
x* with an exponentr>0 for all d, which is the main result

of this Rapid Communication. This excludes the occurrence
of a finite upper critical dimensiord,;, which would show
up, in the present framework, in a stable fixed poiniat
= for d=d.

Let us now discuss the validity of the approximations
used. We neglected configurations witl{(i)=hy+2 or
equivalently deposition processes on a “high” site. The rate
of this process, on a state with “high” sites, is rn)
=n. Our approximation is then valid iff(h—n+1)
>r,,(n). This condition fails when the process is close to
complete a new layer, i.e., far=/9. More precisely the
deposition on “high” sites is not important for

/d

,/d_2> .
/f—n=1 >dx

(15
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Since x* ~29, the approximation is correct for=2 ¥d.  rameters can be included in order to improve the accuracy of
Figure 1 shows that the approximation to the left-hand sidéghe method. It is important to note, however, that the range
(LHS) of Eq. (5) 1+4w?(/'=2x) is good already ford of typical fluctuationsh(i)—h(j)~/“ allowed in the RG
=7. The approximation is much less accuratefor4 and, calculation is small and the one-parameter approximation in
as a consequence, fluctuations in the system of6izé are  Eq. (3) to the scale invariant dynamics is reasonable. This is
underestimated. This means that our approach underes§onfirmed by the accuracy of the RG predictions in finite
mates the right-hand sid&HS) of Eq. (5) and consequently dimensions[19] and it is expected to improve as—0.
also its value at the intersection point with the LHS. This Therefore the inclusion of additional proliferation parameters

value is directly related to the roughness exponent by@g. " EQ- (3) is not expected to change the nature of the fixed
and therefordhe restriction of height fluctuations leads to a PCint and of our main conclusions. Let us also point out that
lower bound to the exponent Accordingly since the LHS usually small cells analysis becomes very accurate in high

of Eq. (5) decreases with, Eq.(12) gives an upper bound to dimensipns. Ar_1 extension of the RG procedu_re to cells of
the true fixed point parameter* . Figure 1 illustrates this ar9er size, going beyond the present approximations, pro-

analysis ford=7. Figure 2 shows a comparison of the vides in principle a systematic way to improve our prediction

present analytical estimatéggs. (12) and (13)] and the re- Which is currently under investigatidi22].
sults of Refs[8,18,19. In conclusion, we have shown that the recently proposed

Besides the approximations of the present calculation|19] réal space RG predicts that the roughness expoaent
which, as we have argued, provide a lower boundytitis ~ decreases not faster thardldsd—ce [Eq. (13)]. This im-

also worth discussing the approximations of the RG metho@!i€S that there is no finite upper critical dimension in the
itself. In this respect we observe that E) is a minimal KPZ universality class and it suggests that theoretical argu-

parametrization of the dynamics, in the sense that it allow&"€nts leading tal;=4 should be reconsidered.
for the minimal proliferation in the RG capturing the relevant  We acknowledge interesting discussions with A. Maritan,
features of KPZ growth. In principle, more proliferation pa- G. Parisi, A. Stella, C. Tebaldi, and A. Vespignani.
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