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High dimensional behavior of the Kardar-Parisi-Zhang growth dynamics
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We investigate analytically the large dimensional behavior of the Kardar-Parisi-Zhang~KPZ! dynamics of
surface growth using a recently proposed nonperturbative renormalization for self-affine surface dynamics.
Within this framework, we show that the roughness exponenta decays not faster thana;1/d for larged. This
implies the absence of a finite upper critical dimension.@S1063-651X~98!50611-3#

PACS number~s!: 64.60.Ak, 05.40.1j, 05.70.Ln, 68.35.Fx
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The study of the nonequilibrium dynamics of rough su
faces and interfaces has received a great deal of attentio
the last years@1,2#. Both theoretically and experimentall
many efforts have been devoted to single out the traits
features shared by apparently different phenomena. In
context, by analogy with equilibrium statistical mechani
the search for universality classes is a central task.
Kardar-Parisi-Zhang equation~KPZ! @3# is, for surface
growth, the main contribution in this direction. It is the min
mal Langevin equation capturing the essence of many dif
ent growth models beyond the Gaussian linear theory@1,2,4#.
It reads

]h~x,t !

]t
5n¹2h1

l

2
~¹h!21h~x,t !, ~1!

where h(x,t) is the surface profile,x is the position in a
d-dimensional substrate,h is a Gaussian white noise,n andl
are constants. The KPZ equation also describes the beh
of directed polymers in random media@1#, systems with mul-
tiplicative noise@5#, and it is related to the Burgers equatio
@6#.

A central quantity of interest is the roughnessW(L) of a
system of linear sizeL, defined as

W2~L !5
1

Ld (
x

@h~x,t !2h̄#2, ~2!

where h̄5(1/Ld)(xh(x,t). In many seemingly unrelate
growth processes the large scale properties of the rough
are observed to be scale invariant and universal; for exam
in the stationary stateW(L);La and correlations decay on
typical timets;Lz, with universal exponentsa andz. These
critical exponents are not independent, as a consequen
the Galilean invariance of the related Burgers equation@1,6#
a1z52. It is thus sufficient to focus the attention on o
exponent, saya.

The theoretical analysis of the KPZ is extremely difficu
Apart from thed51 case, where a special symmetry mak
an exact solution possible witha51/2, the situation is still
quite controversial despite the large effort devoted to
problem. In particular, the fundamental issue of the existe
PRE 581063-651X/98/58~5!/5209~4!/$15.00
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of an upper critical dimensiondc , above which the expo-
nents recover their mean-field~or infinite dimensional! val-
ues (a50) @7#, is highly debated@8#. The application of
field theoretical tools presents an inherent problem: one
deed finds that the fixed point controlling the rough phase
the KPZ is not accessible to perturbation expansion inl; this
fact renders standard field theoretical tools inadequate
this problem. Early applications of nonperturbative metho
such as functional renormalization group@9# and Flory-type
arguments@10# suggested thatdc54, in agreement with a
1/d expansion@11# around thed5` limit. Later the mode-
coupling approximation led to contradictory results sugge
ing the existence of a finitedc @12# or dc5` @13#. Argu-
ments for a finitedc based on directed@14# or invasion@15#
percolation have also been proposed. More recently a
tailed analysis of ad521e perturbative expansion reveale
a singularity atd54 @16#, leading Lässig to the conclusion
thatdc54 is the upper critical dimension of the KPZ dynam
ics @17#.

Numerical simulations of models in the KPZ universali
class markedly disagree with this last conclusion@8#, show-
ing thata.0 at least up tod57 @18#. In particular, numeri-
cal results suggest a large-d behaviora;1/d in agreement
with early conjectures~See Ref.@2#, p. 75!. Both of these
conclusions were confirmed by a recently proposed ren
malization group~RG! approach@19#. The key idea of this
approach is that the geometric scaling of the growing surf
can be ascribed to a scale invariant dynamic process, w
builds the same correlations at all length scales. Thisscale
invariant dynamicsis the fixed point of the RG transforma
tion, which is derived by consistency requirements of t
description of the same system at two different sca
Analogous ideas, implementedvia a real space RG, hav
proved to be quite powerful to investigate the critical pro
erties of nonequilibrium, strong coupling problems@20#. The
implicit nature of the RG transformation, which is similar
spirit to the idea of phenomenological RG@21#, allows us to
avoid the use of hierarchical lattices, a source of incontr
lable approximations, specially in high dimensions. Rema
ably, the exponents predicted by the RG are in excell
agreement with numerical simulations up tod57.

In this Rapid Communication we analyze the large-d be-
havior of this RG approach and show that it predicts that
R5209 © 1998 The American Physical Society
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roughness exponenta vanishes not faster than 1/d for d@1.
This rules out the existence of a finite upper critical dime
sion. In what follows we expose the essential concepts of
method and apply it to the analytical study of the KPZ d
namics in the large-d limit.

Consider a growing surface, whose dynamics, at the
croscopic scale, is defined in terms of a stochastic equa
such as Eq.~1!, or by a discrete model. If we partition th
(d11)-dimensional space in cells of lateral sizeLk52kL0
and vertical sizehk , we obtain astatic description of the
surface at the coarse-grained scaleLk : With some majority
rule each block is declared to be empty or filled. For ea
substrate celli the numberh( i ) of filled blocks on top of it
identifies the interface configuration, in unitshk , at scaleLk .
Note thathk is an independent parameter of the static
scription. Scale invariance implies that ifhk is properly cho-
sen, the coarse-grained system looks similar at all~large
enough! length scalesLk . The optimal geometric descrip
tion, which best exhibits scale invariance, in our case, is
with hk}W(Lk);Lk

a of the same order of typical heigh
fluctuations over a distanceLk . In the RG procedure, we
shall fix hk52W(Lk) in order to have a scale invariant d
scription of the surface~see Ref. @19# for details!. The
coarse-graining procedure, which defines the static desc
tion in terms of blocks of sizeLk , also induces a flow of the
microscopic dynamics towards aneffective dynamicsat the
same scaleLk ; this is defined in terms of the transition rat
for the addition of an occupied block. The main feature
KPZ dynamics is lateral growth@3,4#, and this suggests th
following minimal parametrization of the growth rates at t
generic scaleLk is

r @h~ i !→h~ i !11#[11xk (
jnni

max@0,h~ j !2h~ i !#. ~3!

The first term is the contribution of the vertical growth~i.e.,
random deposition! and the second term is the contributio
of lateral growth. Indeed the sum over neighbor block sitej
counts the area of the vertical surface exposed towards si .
xk is then the ratio of lateral to vertical growth rates. W
shall come back later, in the conclusions, to the approxim
tions implied by Eq.~3!.

In order to derive the RG transformation, let us partition
system of sizeL into l d cells of sizeL/l . We observe that
the roughnessW2(L) can be written as the average roug
nessW2(L/l ) insidesingle cells plus the fluctuations of th
average heightamongdifferent cells. The second contribu
tion, within the description at scaleL/l , is simply given by
the roughnessv2(l ,x) of a system ofl cells, withx being
the dynamic parameter at scaleL/l , times the square heigh
of the cells@2W(L/l )#2. Hence we find

W2~L !5W2~L/l !@114v2~ l ,x!#, ~4!

which is the basis of the RG approach. Withl 54, L
5Lk12 and x5xk , it gives W2(Lk12)/W2(Lk). The same
quantity can be alternatively computed using Eq.~4! with
l 52, once withL5Lk12 and x5xk11, and a second time
with L5Lk11 andx5xk . The consistency of the two calcu
lations yields an implicit RG transformation
-
is
-

i-
n,

h

-

at

ip-

f

-

114v2~2,xk11!5
114v2~4,xk!

114v2~2,xk!
~5!

for the dynamic parameterxk . The attractive fixed point
x* 5 limk→`xk ~if it exists! identifies thescale invariant dy-
namicsand Eq.~4! with xk5x* finally yields the roughness
exponent

a5 lim
k→`

log2AW2~Lk11!

W2~Lk!
5

log@114v2~2,x* !#

2 log 2
. ~6!

Equations~5! and~6! are the starting point of our analysis.
more detailed discussion of their derivation can be found
Ref. @19#. We note here that the existence of an attract
fixed pointx* implies that the process is ‘‘self-organized’
No fine tuning is necessary in order to observe the criti
behavior.

A key observation is that, sincev2(l ,x)→0 for x→`,
x* 5` is a fixed point of Eq.~5! corresponding toa50.
Therefore the RG scheme allows, in principle, for the occ
rence of a finite upper critical dimensiondc ~a50 for d
>dc) and the existence of a finite attractive fixed point f
all d is a nontrivial prediction. A finite stable fixed point wa
found in Ref.@19# for d51, . . . ,8using Monte Carlo meth-
ods to computev2(l ,x). The same method was also applie
to the Gaussian theory@l50 in Eq.~1!#, recovering the result
dc52, i.e., a50 for d>2 @22#. Though very powerful, the
Monte Carlo method cannot be pushed to very high dim
sions, nor does it provide an explicit analytic behavior ofa
as a function ofd.

In the following we study analytically the large-d limit of
the RG in order to extract its predictions on the existence
a finite upper critical dimension and on the large-d behavior
of the roughness exponent.

The technical difficulty lies in the explicit calculation o
the functionsv2(l ,x) for l 52, 4. For d@1 we expect
a!1, which means that surface fluctuationsv(l ,x);l a

.11a ln l 1 . . . are of order 1. This suggests that for
system of small sizel we can reasonably account for th
fluctuations of the interface if we allowh( i ) to take only two
values:h( i )5h0 or h( i )5h011. This drastic approximation
has the advantages of making the explicit computation f
sible on the one hand, and of providing a lower bound for
exponenta on the other. We shall come back later to th
important issue. Let us only stress, for the time being, tha
lower bound ona is sufficient to exclude the existence of
finite dc .

In the above approximation, growth can only occur
‘‘low’’ sites @h( i )5h0#. This means that Eq.~3! is only
valid if h( i )5h0 and the rates vanish on ‘‘high’’ site
@h( i )5h011#. It is convenient to classify the possible co
figurations $h( i )% by the numbern of ‘‘high’’ sites. The
roughness Eq.~2! of each configuration ofn ‘‘high’’ sites is
the same and is equal to (12n/l d)n/l d and the dynamics
involves only transitions from configurations withn to con-
figurations withn11 ‘‘high’’ sites. We can then group al
configurations$h( i )% with n ‘‘high’’ sites in the same effec-
tive state with a great simplification of the structure of t
master equation~the state withn5l d is equivalent to the flat
surfacen50). The only non-vanishing transition ratesr (n
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→n11) are obtained from Eq.~3! summing on all possible
final configurations and taking the average on the initial c
figurations, which leads to

r ~n→n11!5l d2n1x Vn . ~7!

The first term here accounts for vertical growth, which c
occur only on thel d2n ‘‘low’’ sites. The second term is the
contribution of lateral growth andVn is the average numbe
of lateral walls~i.e., the surface between ‘‘low’’ and ‘‘high’’
sites! in configurations withn ‘‘high’’ sites. Assuming that
‘‘low’’ and ‘‘high’’ sites are randomly distributed, each
‘‘low’’ site has on average 2dn/l d ‘‘high’’ neighbor sites
and therefore

Vn.2d~ l d2n!
n

l d
. ~8!

The distribution of ‘‘high’’ sites is actually not random bu
we have verified numerically that, for large enough dime
sions, Eq. ~8! provides a reasonable approximation@23#.
Combining Eqs.~7! and~8! one easily obtains the probabilit
rn of staten in the stationary state of the master equation

rn5r0

r ~0→1!

r ~n→n11!
, n51, . . . ,l d21, ~9!

wherer0 is fixed by the normalization condition(n50
l d21rn

51. A simple calculation leads to

r05H 11
l d

2dxk
F2d ln l 1 lnS 112dxk

l d12dxk
D G J 21

. ~10!

The roughness of configurations withn particles, using Eq.
~2!, is (12n/l d)n/l d which, averaged over the distributio
rn @as specified by Eq.~9! and ~10!# gives

v2~ l ,x!>r0

l d

2dxk
~11!

FIG. 1. Graphic analysis of Eq.~5! from the present approxima
tion and from Monte Carlo evaluation ford57.
-

n

-

where we have assumeddxk@1 andl d@1. Combining Eq.
~11! with the RG equation~5! we obtain, to leading order in
d, a fixed point

x* 52d11ln 2. ~12!

consistent with the assumptiondxk@1. Using now Eq.~6! it
is straightforward to find, to leading order ind@1,

a.
1

3~ ln 2!2

1

d
. ~13!

Furthermore, we can also analyze the stability of the fix
point. The derivative of the RG transformationxk11
5R(xk) of Eq. ~5!, at the fixed point, is

R8~x* !5211
1

2 ln 2

1

d
1O~d22!. ~14!

Since uR8(x* )u,1 we can conclude that the fixed point
attractive;d. Therefore we find a finite, stable fixed poin
x* with an exponenta.0 for all d, which is the main result
of this Rapid Communication. This excludes the occurren
of a finite upper critical dimension,dc , which would show
up, in the present framework, in a stable fixed point atx*
5` for d>dc .

Let us now discuss the validity of the approximatio
used. We neglected configurations withh( i )>h012 or
equivalently deposition processes on a ‘‘high’’ site. The ra
of this process, on a state withn ‘‘high’’ sites, is r up(n)
5n. Our approximation is then valid ifr (n→n11)
@r up(n). This condition fails when the process is close
complete a new layer, i.e., forn.l d. More precisely the
deposition on ‘‘high’’ sites is not important for

l d2n>1@
l d

2dx
. ~15!

FIG. 2. Value ofa from the present calculation~solid line! and
from simulations of Refs.@8# and @18# for d51, . . . ,7. Inview of
the approximations involved~see text! we obtain a lower bound.
Inset: fixed point valuex* (d) vs d. The theoretical prediction~solid
line! is an upper bound to the truex* (d).
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Since x* ;2d, the approximation is correct forl 52 ;d.
Figure 1 shows that the approximation to the left-hand s
~LHS! of Eq. ~5! 114v2(l 52,x) is good already ford
57. The approximation is much less accurate forl 54 and,
as a consequence, fluctuations in the system of sizel 54 are
underestimated. This means that our approach under
mates the right-hand side~RHS! of Eq. ~5! and consequently
also its value at the intersection point with the LHS. Th
value is directly related to the roughness exponent by Eq.~6!
and thereforethe restriction of height fluctuations leads to
lower bound to the exponenta. Accordingly since the LHS
of Eq. ~5! decreases withx, Eq. ~12! gives an upper bound to
the true fixed point parameterx* . Figure 1 illustrates this
analysis for d57. Figure 2 shows a comparison of th
present analytical estimates@Eqs.~12! and ~13!# and the re-
sults of Refs.@8,18,19#.

Besides the approximations of the present calculat
which, as we have argued, provide a lower bound toa, it is
also worth discussing the approximations of the RG met
itself. In this respect we observe that Eq.~3! is a minimal
parametrization of the dynamics, in the sense that it allo
for the minimal proliferation in the RG capturing the releva
features of KPZ growth. In principle, more proliferation p
v.
e

ti-

n,

d

s
t

rameters can be included in order to improve the accurac
the method. It is important to note, however, that the ran
of typical fluctuationsh( i )2h( j );l a allowed in the RG
calculation is small and the one-parameter approximation
Eq. ~3! to the scale invariant dynamics is reasonable. Thi
confirmed by the accuracy of the RG predictions in fin
dimensions@19# and it is expected to improve asa→0.
Therefore the inclusion of additional proliferation paramet
in Eq. ~3! is not expected to change the nature of the fix
point and of our main conclusions. Let us also point out t
usually small cells analysis becomes very accurate in h
dimensions. An extension of the RG procedure to cells
larger size, going beyond the present approximations, p
vides in principle a systematic way to improve our predicti
which is currently under investigation@22#.

In conclusion, we have shown that the recently propo
@19# real space RG predicts that the roughness exponea
decreases not faster than 1/d as d→` @Eq. ~13!#. This im-
plies that there is no finite upper critical dimension in t
KPZ universality class and it suggests that theoretical ar
ments leading todc54 should be reconsidered.
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